Skip to main content

Design Requirements for Autonomous Multivehicle Surface-Underwater Operations

Buy Article:

$28.00 plus tax (Refund Policy)



Future autonomous marine missions will depend on the seamless coordination of autonomous vehicles: unmanned surface vehicles (USVs), unmanned underwater vehicles (UUVs) and unmanned aerial vehicles (UAVs). Such coordination will enable important inter-vehicle applications such as autonomous refueling, high-throughput data transfer and periodic maintenance to extend the mission length. A critical enabling capability is the autonomous capture, retrieval and deployment of a UUV from a USV platform. As a first step toward solving this problem, we propose a performance specification that quantifies the necessary motion compensation required to safely and reliably operate a USV and UUV in concert in the dynamic marine environment. To accomplish this, we use a model-based approach to predict the motion of typical vehicles under the influence of the same sea conditions. We summarize the predictions succinctly using a scalar performance metric, the peak-to-peak vertical displacement, as a function of vehicle type, sea-state and vehicle formation.

To substantiate this model-based approach experimentally, we present sea-trial data and compare the empirical observations to model predictions. The results show that although simple three degree-of-freedom models do not capture the full complexity of an actual six degree-of-freedom ship motion, they can prove expedient in an engineering context for quantifying the design requirements of a USV-UUV capture, deployment and retrieval system.

Keywords: Pierson-Moskowitz spectrum; USV; UUV; sea-state; vehicle dynamics

Document Type: Research Article


Publication date: March 1, 2009

More about this publication?
  • The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers on subjects of interest to the society: marine technology, ocean science, marine policy and education. The Journal is dedicated to publishing timely special issues on emerging ocean community concerns while also showcasing general interest and student-authored works.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more