Skip to main content

Multi-Objective Optimization of an Autonomous Underwater Vehicle

Buy Article:

$28.00 plus tax (Refund Policy)

Abstract:

Abstract

The design of complex systems involves a number of choices, the implications of which are interrelated. If these choices are made sequentially, each choice may limit the options available in subsequent choices. Early choices may unknowingly limit the effectiveness of a final design in this way. Only a formal process that considers all possible choices (and combinations of choices) can insure that the best option has been selected. Complex design problems may easily present a number of choices to evaluate that is prohibitive. Modern optimization algorithms attempt to navigate a multidimensional design space in search of an optimal combination of design variables. A design optimization process for an autonomous underwater vehicle is developed using a multiple objective genetic optimization algorithm that searches the design space, evaluating designs based on three measures of performance: cost, effectiveness, and risk. A synthesis model evaluates the characteristics of a design having any chosen combination of design variable values. The effectiveness determined by the synthesis model is based on nine attributes identified in the U.S. Navy’s Unmanned Undersea Vehicle Master Plan and four performance-based attributes calculated by the synthesis model. The analytical hierarchy process is used to synthesize these attributes into a single measure of effectiveness. The genetic algorithm generates a set of Pareto optimal, feasible designs from which a decision maker(s) can choose designs for further analysis.

Keywords: Analysis of Alternatives; Autonomous Underwater Vehicle Design; Genetic Algorithm; Multi-disciplinary Design Optimization; Synthesis Model

Document Type: Research Article

DOI: http://dx.doi.org/10.4031/MTSJ.43.2.6

Publication date: March 1, 2009

More about this publication?
  • The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers on subjects of interest to the society: marine technology, ocean science, marine policy and education. The Journal is dedicated to publishing timely special issues on emerging ocean community concerns while also showcasing general interest and student-authored works.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
mts/mtsj/2009/00000043/00000002/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more