If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Physiological Response of Scup, Stenotomus chrysops, to a Simulated Trawl Capture and Escape Event

$28.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Scup (Stenotomus chrysops) were severely exercised by manual chasing for 6 min, and the clearance of lactate over a 12 hr period was evaluated. Lactate peaked from 0.5 to 1.0 hr following exercise with concentrations ranging from 61.0 to 126.0 mg/dL and returned to rested concentrations within 4 hr post-exercise. Concentrations of lactate in rested fish ranged from 5.2 to approximately 23.0 mg/dL. Fish were observed for 10 days following exercise for delayed mortality. A 100% survival of scup was observed with no significant difference between control and experimental populations.

Swimming performance was evaluated for 14.0 to 15.0 cm fork length scup, with a towed stimulus through a still-water circular swimming channel, at prolonged and burst speeds. A maximum sustainable swimming speed of 2.2 BL/sec was observed. Between the speeds of 3.0 and 3.3 BL/sec and 4.4 BL/sec, endurance time significantly decreased with the increase in swimming speed. Blood lactate concentrations were measured at 0.5 and 4.0 hr post exercise, and were used as an indicator of white muscle recruitment. A significant difference was not found between rested and experimental mean lactate concentrations at the maximum sustainable swimming speed of 2.2 BL/sec. White muscle recruitment indicated by increases in lactic acid, was recorded at speeds above the maximum sustained swimming speed, and mean blood lactate concentrations were significantly different within blood sampling times and between swimming speeds.

Based on the results of our investigations of lactate recovery in scup following a simulated trawl capture and escape event, we believe that scup interacting with a bottom trawl and subsequently escaping, are physiologically stressed by the event, but recover in less than 6 hr. AU experimentally treated fish survived both exhaustive exercise and prolonged swimming, suggesting encounter mortality is minimal. The results of this study do not address the effects of possible physical damage on escape or the effect of multiple encounters.

Document Type: Research Article

DOI: http://dx.doi.org/10.4031/MTSJ.33.2.5

Publication date: January 1, 1999

More about this publication?
  • The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers on subjects of interest to the society: marine technology, ocean science, marine policy and education. The Journal is dedicated to publishing timely special issues on emerging ocean community concerns while also showcasing general interest and student-authored works.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more