Skip to main content

Cloning and identification of EDD gene from ultraviolet-irradiated HaCaT cells

Buy Article:

$51.00 plus tax (Refund Policy)


Ultraviolet (UV) radiation is one of the most important external stimuli that affects skin by inducing cancer, inflammation and cell death. To identify the regulation of genes regulated by UV during transformation, normal human keratinocyte cell line, HaCaT, was exposed to multiple doses of UVA+B (UVA – 150–200 mJ/cm2 and UVB – 15–20 mJ/cm2× 6). Malignant transformation was confirmed by formation of colonies on soft agar and DNA methylation assay. To identify the genes involved in this process, random amplification of polymorphic DNA using RNA from unexposed and multiple exposed cells was performed after each exposure. A few up-regulated genes were identified, cloned and sequenced. One of the genes had homology to EDD (E3 identified by differential display) that was up-regulated at second exposure but was down-regulated in colony-forming cells (cells that received six or more exposures) as determined by RT-PCR. This is a progesterone-induced gene and progesterone treatment reduced the extent of colony formation on soft agar plate. It is possible that hormone therapy may have some effects on skin cancer in vivo.

Keywords: UV; cancer; skin; ubiquitin ligase

Document Type: Research Article


Affiliations: 1: Madurai Kamraj University, Madurai, India, 2: Environmental Safety Laboratory, Hindustan Lever Research Centre, Mumbai, India and

Publication date: 2006-12-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more