If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Free Content Combination of Electroporation and DNA/Dendrimer Complexes Enhances Gene Transfer into Murine Cardiac Transplants

You have access to the full text article on a website external to ingentaconnect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Download Article:

Abstract:

Electroporation is a new gene delivery method to increase gene transfer and expression in vivo. Starburst polyamidoamine dendrimers have been demonstrated to augment gene expression in vitro and in vivo. We hypothesized that the combination of electroporation and dendrimer could enhance the gene transfer and gene expression in cardiac transplants. After immersion in DNA/dendrimer complexes or intracoronary transfer of DNA/dendrimer complexes, both nonvascularized and vascularized syngeneic cardiac grafts, respectively, were subjected to serial electrical pulses before transplantation. β-Galactosidase reporter gene expression in the graft was determined by X-Gal staining. Gene expression was enhanced 10- to 45-fold in grafts immersed in DNA/dendrimer complexes, or after intracoronary transfer of DNA/dendrimer complexes, and subjected to 20 square wave 25-ms pulses with a strength of 200 V/cm. The combination of electroporation and DNA/dendrimer complexes may provide a novel approach to enhance gene transfer and gene expression ex vivo.

Keywords: Dendrimer; electroporation, gene transfer, transplantation

Document Type: Research Article

DOI: http://dx.doi.org/10.1034/j.1600-6143.2001.10408.x

Affiliations: 1: Institute for Gene Therapy and Molecular Medicine and the Recanati/Miller Transplantation Institute, Mount Sinai School of Medicine, New York, NY 10029-6574, USA 2: Center for Biologic Nanotechnology, The University of Michigan, Ann Arbor, MI 48105, USA

Publication date: November 1, 2001

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more