Skip to main content

The effects of isoflurane anesthesia and mechanical ventilation on renal function during endotoxemia

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Background:

Isoflurane is a common anesthetic agent used in human surgery and in animal models of sepsis. It has been suggested to have beneficial anti-inflammatory properties and to protect kidney function. Here, we investigated the effect of isoflurane on the development of kidney injury and dysfunction during 48-h endotoxemia in sheep. Methods:

Before the experiments, the sheep (n=16) were surgically equipped with transit-time flowprobes around the renal, femoral and superior mesenteric artery. The animals were randomized to either be anesthetized with isoflurane and mechanically ventilated or to remain conscious while they received intravenous Escherichia coli lipopolysaccharide (LPS) for 48 h (25 ng/kg/min). In two animals in each group, the LPS was excluded to investigate any effect of isoflurane per se over time. Results:

Endotoxemia caused cardiovascular changes typical for hyperdynamic sepsis and, although renal hyperemia occurred, impaired renal function in both groups. Compared with conscious animals, isoflurane significantly (P<0.05) reduced urine output, renal creatinine clearance, fractional sodium excretion and renal blood flow during endotoxemia. Furthermore, the plasma concentrations of urea and creatinine increased more in the anesthetized animals. Isoflurane anesthesia also enhanced neutrophil activity and accumulation in the kidney during endotoxemia. N-acetyl--d-glucosaminidase was significantly increased, with no inter-group difference as an indication of tubular injury. Conclusions:

The results of the current study suggest that isoflurane anesthesia (minimum alveolar concentration 1.0) with mechanical ventilation aggravates renal dysfunction during 48 h of endotoxemia and does not significantly reduce the inflammatory response or signs of tubular damage.

Document Type: Research Article

DOI: https://doi.org/10.1111/j.1399-6576.2011.02406.x

Affiliations: 1: Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden 2: Department of Anaesthesiology and Intensive Care, Karolinska University Hospital, Huddinge and Clintec, Karolinska Institutet, Stockholm, Sweden

Publication date: 2011-04-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more