Skip to main content

Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Background: 

Morbidly obese patients have an increased risk for peri-operative lung complications and develop a decrease in functional residual capacity (FRC). Electric impedance tomography (EIT) can be used for continuous, fast-response measurement of lung volume changes. This method was used to optimize positive end-expiratory pressure (PEEP) to maintain FRC. Methods: 

Fifteen patients with a body mass index of 49 ± 8 kg/m2 were studied during anaesthesia for laparoscopic gastric bypass surgery. Before induction, 16 electrodes were placed around the thorax to monitor ventilation-induced impedance changes. Calibration of the electric impedance tomograph against lung volume changes was made by increasing the tidal volume in steps of 200 ml. PEEP was titrated stepwise to maintain a horizontal baseline of the EIT curve, corresponding to a stable FRC. Absolute FRC was measured with a nitrogen wash-out/wash-in technique. Cardiac output was measured with an oesophageal Doppler method. Volume expanders, 1 ± 0.5 l, were given to prevent PEEP-induced haemodynamic impairment. Results: 

Impedance changes closely followed tidal volume changes (R2 > 0.95). The optimal PEEP level was 15 ± 1 cmH2O, and FRC at this PEEP level was 1706 ± 447 ml before and 2210 ± 540 ml after surgery (P < 0.01). The cardiac index increased significantly from 2.6 ± 0.5 before to 3.1 ± 0.8 l/min/m2 after surgery, and the alveolar dead space decreased. PaO2/FiO2, shunt and compliance remained unchanged. Conclusion: 

EIT enables rapid assessment of lung volume changes in morbidly obese patients, and optimization of PEEP. High PEEP levels need to be used to maintain a normal FRC and to minimize shunt. Volume loading prevents circulatory depression in spite of a high PEEP level.

Keywords: body mass index; electric impedance tomography; functional residual capacity; monitoring; positive end-expiratory pressure

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1399-6576.2006.01079.x

Affiliations: Department of Anaesthesia and Intensive Care, Sahlgrenska University Hospital, Göteborg, Sweden

Publication date: August 1, 2006

mksg/aas/2006/00000050/00000007/art00010
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more