Skip to main content

Effects of 0.5 and 1.0 MAC isoflurane, sevoflurane and desflurane on intracranial and cerebral perfusion pressures in children

Buy Article:

$43.00 plus tax (Refund Policy)


Isoflurane has been a commonly used agent for neuroanesthesia, but newer agents, sevoflurane and desflurane, have a quicker onset and shorter emergence from anesthesia and are increasingly preferred for general pediatric anesthesia. But their effects on intracranial pressure (ICP) and cerebral perfusion pressure (CPP), especially in pediatric patients with already increased ICP, have not been well documented. Methods: 

We studied 36 children scheduled for elective implantation of an intraparenchymal pressure device for 24 h monitoring for suspected elevated ICP. After a standardized intravenous anesthesia, the patients were moderately hyperventilated with 60% nitrous oxide (N2O) in oxygen. The patients were then randomized to receive 0.5 and 1.0 MAC of isoflurane (Group I, n = 12), sevoflurane (Group S, n = 12) or desflurane (Group D, n = 12) in 60% N2O in oxygen. Respiratory and hemodynamic variables, ICP and CPP were recorded at baseline and after exposure to a target level of test drug for 10 min or until CPP fell below 30 mmHg (recommended lower ICP level is 25 mmHg in neonates, rising to 40 mmHg in toddlers). Results: 

When comparing baseline values with values at 1.0 MAC, mean arterial pressure (MAP) decreased (P < 0.001) in all groups, with no differences between the groups. ICP increased (P < 0.001) with all agents, mean +2, +5, and +6 mmHg in Group I, S and D, respectively, with no differences between the groups. Regression analyzes found no relationship between baseline ICP and the increases in ICP from baseline to 1.0 MAC for isoflurane or sevoflurane. However, increased baseline ICP tended to cause a higher ICP increase with 1.0 MAC desflurane; regression coefficient +0.759 (P = 0.077). The difference between regression coefficients for Group I and Group D were not significant (P = 0.055). CPP (MAP-ICP) decreased (P < 0.001) in all groups, mean −18, −14 and −17 mmHg in Group I, S and D, respectively, with no significant difference between the groups. Conclusions: 

0.5 and 1.0 MAC isoflurane, sevoflurane and desflurane in N2O all increased ICP and reduced MAP and CPP in a dose-dependent and clinically similar manner. There were no baseline dependent increases in ICP from 0 to 1.0 MAC with isoflurane or sevoflurane, but ICP increased somewhat more, although statistically insignificant, with higher baseline values in patients given desflurane. The effect of MAP on CPP is 3–4 times higher than the effect of the increases in ICP on CPP and this makes MAP the most important factor in preserving CPP. In children with known increased ICP, intravenous anesthesia may be safer. However, maintaining MAP remains the most important determinant of a safe CPP.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: cerebral perfusion pressure; children; desflurane; intracranial pressure; isoflurane; pediatric anesthesia; sevoflurane

Document Type: Research Article

Affiliations: 1: Anesthesiology, 2: Neurosurgery and 3: Section of Biostatistics, Rikshospitalet University Hospital, Oslo, Norway

Publication date: 2003-09-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more