Skip to main content

Free Content Reduction of antimony by nano-particulate magnetite and mackinawite

Download Article:
 Download
(PDF 834.72265625 kb)
 

Abstract:

The speciation of antimony is strongly influenced by its oxidation state (V, III, 0, −III). Redox processes under anaerobic groundwater conditions may therefore greatly alter the environmental behaviour of Sb. Employing X-ray absorption and photoelectron spectroscopy, we show here that Sb(V) is reduced to Sb(III) by magnetite and mackinawite, two ubiquitous Fe(II)-containing minerals, while Sb(III) is not reduced further. At the surface of magnetite, Sb(III) forms a highly symmetrical sorption complex at the position otherwise occupied by tetrahedral Fe(III). The Sb(V) reduction increases with pH, and at pH values >6.5 Sb(V) is completely reduced to Sb(III) within 30 days. In contrast, at the mackinawite surface, Sb(V) is completely reduced across a wide pH range and within 1 h. The Sb(V) reduction proceeds solely by oxidation of surface Fe(II), while the oxidation state of sulphide is conserved. Independent of whether Sb(V) or Sb(III) was added, an amorphous or nanoparticulate SbS3-like solid formed.

Keywords: ANTIMONY; EXAFS; MACKINAWITE; MAGNETITE; REDUCTION

Document Type: Research Article

DOI: https://doi.org/10.1180/minmag.2008.072.1.185

Publication date: 2008-02-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more