Skip to main content

Open Access On the mechanism of exfoliation of 'Vermiculite'

Download Article:
(PDF 3882.0419921875 kb)


Six samples of 'Vermiculite' have been studied to investigate the mechanism of its well known but poorly understood property to exfoliate. The samples were analysed quantitatively by XRD to determine their precise mineralogical composition. Electron microprobe methods, including elemental mapping of native potassium and of caesium (introduced by cation exchange) were used to examine variation in the chemical composition of the particles. Most of the samples examined show heterogeneous mineralogical compositions which occur as distinct zones within the volume of individual particles, presenting a mosaic texture. Exfoliation is related to this mosaic distribution of the different mineral phases within the particles. Lateral phase boundaries between vermiculite and mica layers, or vermiculite and chlorite layers are postulated to prevent or impede the escape of gas from a particle, resulting in exfoliation when the pressure exceeds the interlayer bonding forces that hold the layers together. This mechanism provides a common explanation for the exfoliation of 'Vermiculite' by thermal methods or by treatment with H2O2. Paradoxically, one sample which consists of pure vermiculite, in the mineralogical sense of the term, demonstrates that pure vermiculite does not and should not exhibit the property of exfoliation. Our explanation of the mechanism of exfoliation explains the commonly observed particle size dependence of exfoliation and the tendency for obviously poly-phase 'Vermiculite' samples to show the largest coefficients of expansion.


Document Type: Research Article


Publication date: 2013-09-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more