Micromilieu-controlled glauconitization in fecal pellets at Oker (Central Germany)

$14.04 plus tax (Refund Policy)

Buy Article:

Abstract:

Although numerous models for the formation of glauconite have been presented, the precise process and micro-environment of glauconitization are still poorly constrained. We characterize the special micromilieu of glauconitization developed during early diagenesis and present a model for glauconite formation in fecal pellets.

Glauconitization at Oker (Central Germany) occurred predominantly in fecal pellets deposited in a shallow marine-lagoonal environment during the Kimmeridgian. Within the fecal pellets, rapid oxidation of organic matter provides the post-depositional, physicochemical conditions favourable for glauconitization. Replacements of matrix calcite, dissolution of detrital quartz, K-feldspar, and clay minerals, and Fe redox reactions were observed within the early micro-environment, followed by the precipitation of euhedral pyrite, matrix-replacive dolomite, and megaquartz accompanied by I-S formation as thin section analyses and SEM observations show. Carbonate geochemical compositions based on ICP-OES and stable oxygen and carbon isotope signatures demonstrate that glauconite formation started in a suboxic environment at a pH of 7–8 and a temperature of 22±3°C to 37±2°C at maximum.

TEM-EDX-SAED and XRD analyses on separated glauconite fecal pellets and on the <2 μm clay mineral fraction reveal the predominance of authigenic 1Md-glauconite, 1Md-glauconite-smectite, and 1Md cis-vacant I-S, besides accessory detrital 2M1-illite and montmorillonite. Kinetic modelling of the glauconite (93–94% Fe-illite layers and 6–7% Fe-smectite layers, R3) and of I-S (66–68% Al-illite layers and 32–34% Al-smectite layers, R1) leads us to conclude that the I-S formed solely by slow burial diagenesis, whereas the glauconite formed close to the seafloor, suggesting significantly faster kinetics of the glauconitization reaction compared with smectite-illitization related to burial diagenesis. Thermodynamically, the substitution of octahedral Al3+ for Fe3+ and Mg2+ during the Fe-Mg-smectite to glauconite reaction via the formation of glauconite-smectite mixed-layered clay minerals may have resulted in a higher reaction rate for this low-temperature glauconitization process.

Keywords: GERMANY; GLAUCONITE; ILLITE-SMECTITE; MICROMILIEU; OKER; TEM-EDX; XRD

Document Type: Research Article

DOI: http://dx.doi.org/10.1180/claymin.2012.047.4.09

Publication date: December 1, 2012

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more