If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Microwave-activated p-TSA dealuminated montmorillonite – a new material with improved catalytic activity

$14.96 plus tax (Refund Policy)

Buy Article:

Abstract:

We report a montmorillonite material with enhanced surface area but with very little alteration in cation exchange capacity (CEC) upon dealumination with para toluene sulphonic acid (p-TSA). The new material shows higher catalytic activity in comparison with mineral-acid-treated clay. Montmorillonite clay was treated with p-TSA for 10 minutes under microwave irradiation. The resulting clay was characterized by CEC, X-ray diffraction (XRD), BET analysis, Fourier transform infrared spectroscopy (FT-IR), temperature programmed desorption (TPD) of ammonia and cyclic voltametry (CV) techniques. XRD patterns show an unchanged structure of pristine matrix after the acid action. BET analysis revealed an increase in the surface area and pore volume on p-TSA treatment, indicating formation of voids in the octahedral layer which suggests dealumination. Nitrogen adsorption-desorption curves showed the creation of new micro porous regions, possibly in the octahedral sheets. In contrast to mineral acid treatment, p-TSA treated clay samples showed similar CEC which shows the absence of dissolution of isomorphously substituted Mg and Fe ions present in the octahedral layer. CV studies confirm the formation of an Al-p-TSA complex, suggesting dissolution of aluminium octahedral sheets. The complex subsequently hydrolyses, replacing interlayer cations with Al3+ ions. Similar treatment with mineral acid resulted in clay with enhanced surface area but with reduced CEC, evidently due to the removal of isomorphously substituted Fe and Mg. Further, the p-TSA treated clays showed relatively higher esterification activity under solvent-free microwave irradiation. The p-TSA treated clay retained its activity even after three subsequent runs and thus can be exploited for practical applications.

Keywords: MICROPOROSITY; MICROWAVE IRRADIATION; MIXED-ION CLAYS; MONTMORILLONITE; P-TSA TREATMENT

Document Type: Research Article

DOI: http://dx.doi.org/10.1180/claymin.2012.047.2.06

Publication date: June 1, 2012

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more