Skip to main content

The early-Eocene climate optimum (EECO) event in the Qaidam basin, northwest China: clay evidence

Buy Article:

$13.61 plus tax (Refund Policy)

Abstract:

Clay mineralogy and its palaeoclimatic interpretation of the early-Eocene (∼53.3–49.70 Ma) sediments at Lulehe, Qaidam basin, northwest China, were investigated using optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The interval of ∼53.3–49.70 Ma, including the early-Eocene climate optimum (EECO) with isotopic events, was the transition period of “greenhouse” to “icehouse”. Climate changes during the episode were documented in the sediments and were expressed by the proportion of clay species and clay indices, as well as by the proportion of non-clay minerals, gypsum, halite and calcite. Our results suggest that a warm and humid climate prevailed over the period ∼53.3–52.90 Ma, followed by a warm and seasonally dry and humid climate in the period ∼52.90–51.0 Ma and a subsequently warm and humid climate in the period ∼51.0–49.70 Ma. Three warmer and more humid intervals were observed at 52.7, 51.0 and 50.5 Ma based on clay indices. The climate evolution in the Qaidam Basin during the period derived from the clay mineralogical study is in good agreement with the early Eocene global climate change, and the warm and seasonally dry and humid episode in the early Eocene in Qaidam basin is a regional response to the global early-Eocene climate optimum.

Keywords: CLAY MINERALS; ILLITE CRYSTALLINITY; LULEHE FORMATION; PALAEOCLIMATE; QAIDAM BASIN; THE EARLY-EOCENE CLIMATE OPTIMUM (EECO)

Document Type: Research Article

DOI: http://dx.doi.org/10.1180/claymin.2011.046.4.649

Publication date: December 1, 2011

More about this publication?
minsoc/cm/2011/00000046/00000004/art00010
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more