Skip to main content

Alteration zonation in the Loma Blanca kaolin deposit, Los Menucos, Province of Rio Negro, Argentina

Buy Article:

$12.15 plus tax (Refund Policy)

The Loma Blanca mine is in one of the northwest kaolinized zones of the Los Menucos area (Patagonia, Argentina). The parent rocks are andesites and andesitic tuffs from the Vera Formation, Los Menucos Group (Lower Triassic). Hayase & Maiza (1974) proposed a concentric zonation model. From the parent rock outward, four different alteration patterns were recognized: Zone 1, with sericite, chlorite and montmorillonite; Zone 2, with kaolinite and dickite; Zone 3, with dickite, pyrophyllite and alunite; and Zone 4, with quartz, disseminated sulphides and diaspore.

The relationship between the chemical composition of major, minor and trace elements and the mineralogical alteration zonation was evaluated to confirm the genesis of the deposit. Fe2O3, CaO, Na2O and K2O contents decrease from Zone 1 to Zone 3, whereas Al2O3 and LOI increase in the kaolinite-alunite zone. In the chemical composition of alunite, Na > K. Large Ba, Sr, V and Zr contents were observed mainly in Zones 2 and 3. Co, Ni, Cu, Zn and Rb are more common in Zone 1. LREE are more abundant than HREE in Zones 2 and 3. In kaolinites, 18O values range from 10.8‰ to 13.2‰, and D from −83‰ to −85‰.

The mineral assemblage (dickite-alunite-pyrophyllite-diaspore), the alteration zonation pattern (laterally concentric), the geochemistry of trace elements, the relation between LREE and HREE and the small 18O values suggest that the Loma Blanca deposit was formed by hydrothermal processes.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: ARGENTINA; CHLORITE; DICKITE; GEOCHEMISTRY; KAOLIN; KAOLINITE; LOMA BLANCA DEPOSIT; PYROPHYLLITE

Document Type: Research Article

Publication date: 2010-06-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more