If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Sedimentation characteristics of two commercial bentonites in aqueous suspensions

$14.96 plus tax (Refund Policy)

Buy Article:

Abstract:

The sedimentation characteristics of two commercial bentonites, Tixoton (organically treated) and Montigel-F (untreated), were investigated using a 3% w/v clay suspension at different concentrations (1, 3.5 and 10%) of NaCl and pH values (2, 7 and 12). Settling rates, floc diameters and sediment volumes were derived from changes in light transmittance using a Turbiscan Ma 2000 instrument.

Both bentonite suspensions were unstable (flocculated) in NaCl solutions. The settling rate increased with increasing concentration of NaCl and was directly related to floc diameter. The sediment volume reduced with increasing NaCl concentrations, a result of greater double layer compression caused by increased ionic strength. At comparable salt concentrations, the organically-treated bentonite (Tixoton) settled at a much slower rate and had a greater sedimentation volume. The suspensions of both organically-treated and untreated bentonites were stable (dispersed) above pH 7 and unstable in acidic conditions. The settling rate for Tixoton under acid conditions was much smaller than that for the Montigel-F. Differences in sedimentation characteristics between the two bentonite samples are probably due to the presence of an anionic polymer (carboxymethyl cellulose: CMC) in Tixoton.

The viscosity of the bentonite suspensions was also studied. The viscosity of the clay suspension is closely related to clay dispersivity in solution. The CMC was highly effective in increasing the viscosity of the bentonite suspensions, but only under neutral and alkaline conditions.

Keywords: BENTONITE; DISPERSION; DRILLING FLUID; FLOCCULATION; NACL; PH; SEDIMENT VOLUME; SETTLING RATE; SUSPENSION; VISCOSITY

Document Type: Research Article

DOI: http://dx.doi.org/10.1180/claymin.2008.043.3.09

Publication date: September 1, 2008

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more