Skip to main content

Interactions in organic rectorite composite gel polymer electrolyte

Buy Article:

$13.61 plus tax (Refund Policy)

Abstract:

Rectorite (REC) was modified with dodecyl benzyl dimethyl ammonium chloride (1227) to form an organic-modified rectorite, termed OREC. The OREC was used as a filler additive to modify gel polymer electrolytes (GPEs) which consisted of polymethyl methacrylate (PMMA), propylene carbonate (PC) and LiClO4. Studies of ionic conductivity and viscosity of liquid electrolytes and pure PC, respectively, clearly showed that these properties are greatly influenced by temperature and the amount of OREC added; a consequence of the interactions between the components of CPEs. The Fourier transform infrared (FTIR) spectroscopy results indicated that there were two kinds of interaction: namely (1) a strong hydrogen bond between Si OH and C=O of PC and (2) a weak interaction between Li+ and C=O. Inverse gas chromatography (IGC) research supported the FTIR interpretation, indicating that the two interactions exist and that the H bond is the stronger of the two. In CPEs, the polymer matrix of PMMA merely supports the active components and does not influence the interactions between them. The OREC greatly increased the crucial plasticizer maintenance property when the amount of clay added was optimum.

Keywords: COMPOSITE GEL POLYMER ELECTROLYTES; HYDROGEN BOND; INTERACTION; POLYMETHYL METHACRYLATE; RECTORITE

Document Type: Research Article

DOI: http://dx.doi.org/10.1180/claymin.2007.042.4.05

Publication date: December 1, 2007

More about this publication?
minsoc/cm/2007/00000042/00000004/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more