Skip to main content

Effect of slope aspect on transformation of clay minerals in Alpine soils

Buy Article:

$13.08 plus tax (Refund Policy)

Two soil profile sequences on paragneiss debris in the Val di Rabbi (Northern Italy) along an altitude gradient ranging from 1200 to 2400 m a.s.l. were studied to evaluate the effect of aspect on the weathering of clay minerals. All the soils had a coarse structure, a sandy texture and a low pH. Greater weathering intensities of clay-sized phyllosilicates (greater content of smectites) were observed in soils on the north-facing slope. On the south-facing slope, smectite was found only in the surface horizon of the soil profile at the highest altitude. Hot citrate treatment of north-facing soils revealed the presence of low-charged 2:1 clay minerals, the expansion of which was hindered in the untreated state by interlayered polymers. However, the hot citrate treatment encountered some problems with the samples of the south-facing soils: as confirmed by Fourier transform infrared spectroscopy, the hot citrate treatment was unable to remove all interlayer Al polymers. The 2:1 phyllosilicates were not expanded by ethylene glycol solvation in several samples, although thermogravimetric analyses indicated the presence of clay minerals with interlayer H2O. At the same time, the collapse of clay minerals to 1.0 nm following K-saturation was evident. Theoretically, this should indicate that 2:1 phyllosilicates had no evident substitution of trioctahedral cations (Mg2+, Fe2+) by dioctahedral cations (Al3+ and Fe3+). X-ray diffraction analysis of the d060 region and determination of the layer charge of clay minerals by the long-chain (C18) alkylammonium ion, however, did not confirm this. A transformation from trioctahedral to dioctahedral species was observed and low-charge clay minerals ( ∼0.30) were identified in the surface horizons of the south-facing sites. In the south-facing soils, the podzolization process was less pronounced because of a lower water flux through the soil and probably less complexing organic molecules that would remove the interlayer polymers. Besides the eluviation process, clay minerals underwent a process of ionic substitutions in the octahedral sheet that led to the reduction of the layer charge. This process was more obvious in the north-facing sites.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2007-09-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more