Skip to main content

MAS NMR investigation of kaolinite-smectite structure using 6Li and 29Si with Mn exchange

Buy Article:

$13.61 plus tax (Refund Policy)

Abstract:

Kaolinite-smectite mixed-layers have been found to have a complex structure with smectite and kaolinite domains within layers. Here we further investigate this structure in samples with 0–80% kaolinite layers, as determined by X-ray diffraction, by means of magic angle spinning nuclear magnetic resonance (MAS NMR) of 29Si and 6Li. The 29Si NMR experiments were carried out on two samples (55 and 80% kaolinite layers), before and after their exchange with Mn2+, a paramagnetic ion that causes NMR signal loss from neighbouring nuclei, in order to investigate the distance between Mn ions and Si atoms in kaolinite sites. The 29Si NMR intensity from such sites (at ∼−91 ppm) was reduced upon Mn exchange, indicating that some Mn ions are located near kaolinite Si sites. The position of the 6Li peak changes slightly (−1.3 to −1.8 ppm) but progressively with increasing kaolinite content (0–80% kaolinite layers) of four K-S specimens, suggesting two slightly different chemical environments for interlayer Li, one related to smectite and the other to kaolinite. The two sets of experiments are consistent with a complex structure of kaolinite-smectite, including smectite and kaolinite domains within layers and/or interlayers of varying smectitic and kaolinitic character.

Keywords: 29SI; 6LI; KAOLINITE-SMECTITE; MAS NMR

Document Type: Research Article

DOI: http://dx.doi.org/10.1180/claymin.2007.042.2.04

Publication date: June 1, 2007

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more