Skip to main content

Determination of the cation exchange capacity of clays with copper complexes revisited

Buy Article:

$13.61 plus tax (Refund Policy)

Abstract:

The determination of the cation exchange capacity (CEC) of clays by exchange with the cationic copper complexes [Cu(en)2]2+ and [Cu(trien)]2+ is revisited. The procedures reported by Bergaya & Vayer (1997) and Meier & Kahr (1999) are modified slightly. The concentration of the copper complexes in the equilibrium solutions is measured by spectral photometry. Correct CEC values of the [Cu(en)2]2+ exchange are only obtained when a buffer ('tris', tris (hydroxymethyl) aminomethane, pH = 8) is added to the equilibrium solution after separation of the clay, because the molar extinction coefficient of this complex depends on the pH of the solution. A standard procedure is recommended as a reference method. In most cases, tris addition is not needed for the determination with [Cu(trien)]2+ cations. Nevertheless, tris addition is recommended in the standard procedure. Determination of CEC for 40 samples (kaolins, 'common clays', bentonites, montmorillonites and beidellite) shows a good agreement between measurements using [Cu(en)2]2+ and [Cu(trien)]2+ cations and with results by the ammonium acetate method.

Keywords: AMMONIUM ACETATE METHOD; BENTONITES; CEC; COMPETITIVE ADSORPTION; COPPER COMPLEXES

Document Type: Research Article

DOI: https://doi.org/10.1180/0009855054040182

Publication date: 2005-12-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more