Skip to main content

The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches

Buy Article:

$13.61 plus tax (Refund Policy)

Abstract:

Fe-rich smectites from lateritic weathering profiles have previously been studied by XRD, ICP-AES, SEM-EDX and TEM-EDX analyses (Gaudin et al., 2004). These smectites exhibit intermediate chemistries between five end-members: Al-Fe beidellites, Al-Fe montmorillonites and Mg+Ni-saponite. The spectroscopic study by FTIR and XAS of these smectites reveals that: (1) tetrahedral Fe3+ is near or below the detection limit (0.05 cation for 4Si); (2) the large chemical variability is due to substitution of the three major cations (Fe, Al, Mg) within adjacent octahedra; (3) Ni is not concentrated in another clay phase such as Ni-kerolite and is located in the octahedral sheets of smectite; (4) octahedral cations are not randomly distributed but ordered in separated Fe, Al, Mg, Ni clusters; (5) the Mg-Ni saponite end-member actually appears as small trioctahedral clusters of Mg and Ni distributed within the dioctahedral smectite.

Keywords: AUSTRALIA; INFRARED SPECTROSCOPY; LATERITE; MURRIN MURRIN; NI; SMECTITES

Document Type: Research Article

DOI: https://doi.org/10.1180/0009855043940147

Publication date: 2004-12-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more