Skip to main content

Authigenic halloysite from El-Gideda iron ore, Bahria Oasis, Egypt: characterization and origin

Buy Article:

$12.55 plus tax (Refund Policy)

Halloysite in El-Gideda iron mine occurs as very soft, light and white-to-pinkish white pockets and lenses ranging in diameter from 50 cm to 1 m within the iron ore. Highly hydrated halloysite is the main constituent of these pockets beside some kaolinite and alunite. The diffraction pattern of the clay fraction (<2 m m) shows a rather broad and diffuse 001 reflection spread between 10.3 and 13.6º2 y . Upon treatment, the 001 reflection of halloysite expands up to 10.94 Å and 11.9 Å corresponding to ethylene glycol and dimethyl formamide treatment, respectively. After these treatments, kaolinite appeared with its characteristic basal spacing (~7 A ˚ ). The percentage of halloysite in halloysite-intercalated kaolinite ranged between 80 and 90%. Heating to 350ºC, produces a kaolinite-like structure (~7.1 Å ) that developed to a metakaolinite-structure when heated to 550ºC. Morphologically, halloysite appears as well developed tubes composed entirely of SiO2 and Al2 O3, while kaolinite is characterized by very fine platelets arranged in book-like or rosette-like shapes. A differential thermal analysis curve of the studied halloysite showed an endothermic peak at ~138ºC due to the dehydration of interlayer water of halloysite. The small shoulder at ~540ºC and the endothermic peak at ~593ºC is attributed to the dehydroxylation of halloysite, kaolinite and alunite. On the other hand the exothermic peak that appeared at 995ºC is due to the formation of new phases such as mullite and/or spinel. The infrared vibrational spectrum is typical of highly disordered halloysite and kaolinite. Halloysite was formed as a result of alteration of the overlying glauconite suggesting intensive chemical alteration during a humid wet period that prevailed in the Bahria Oasis during the late Eocene. Glauconite alteration releases K, Fe, silica and alumina. Iron forms at least part of the iron ore in the El-Gideda mine while alumina forms halloysite as well as alunite when interacted with silica in an acidic environment.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ALTERATION; ALUNITE; BAHRIA OASIS; EGYPT; EL-GIDEDA; GLAUCONITE; HALLOYSITE; IRON; KAOLINITE

Document Type: Research Article

Publication date: 2004-06-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more