If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Thermal evolution of Mg-Al-CO3 hydrotalcites

$14.96 plus tax (Refund Policy)

Buy Article:


The thermal decomposition of hydrotalcite (HT), with chemical composition Mg1-xAlx(OH)2(CO3)x/2.(1-3x/2)H2O, (0.20 < x ≥ 0.33), is a complex sequence of dehydration, dehydroxylation and decarbonization and leads to the formation of a series of metaphases: HT-D (dehydrated HT), HT-B (partially dehydroxylated HT) and MO (mixed oxides with periclase-like structure). The evolution of water and CO2 in natural and synthetic hydrotalcites (a Mg/Al ratio between 2:1and 3.7:1 ), heated to 800ÂșC, was investigated by differential thermal analysis, thermogravimetry and evolved gas analysis. At least six endothermic and two exothermic effects were established by computer-aided resolving of the curves. The formation of each HT metaphase was related to the release of a discrete number of water molecules depending on the Al content in the samples and each appeared as a corresponding endothermic peak in the DTA curves. The exothermic processes associated with the crystallization of HT-B and MO metaphases were specified by decomposition of DTA curves. The evolution of CO2 during the thermal decomposition of the carbonate groups was found to be different for the samples studied. The preservation of CO3 even at high temperatures was established for synthetic samples with a high Al content. The release of volatile H2 O and CO2 (which comprise ~40% of the sample mass) provokes fine cracking both along and across the layers.


Document Type: Research Article

DOI: http://dx.doi.org/10.1180/0009855043920129

Publication date: June 1, 2004

More about this publication?
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more