Influence of grinding on the structure and colour properties of talc, bentonite and calcite white fillers

$14.04 plus tax (Refund Policy)

Buy Article:

Abstract:

The influence of grinding on colour and particle-size properties of talc and smectite from a white bentonite were studied and compared with a fine-grained calcite from a chalk. Grinding decreased the grain size of all three minerals. The crystallite size and structure of smectite was not affected but the crystallite size of talc decreased. The Si-O-Mg and Mg-O bonds of talc were disrupted and cation exchange capacity increased with increasing grinding. Delamination of talc crystallites was observed in the initial stages of grinding, whereas with more intense treatment, amorphous material was formed. Comminution improved the colour properties of all three minerals, namely brightness, L *(lightness) and E*ab (deviation from perfect white diffuser). Grinding time exerts greater influence on the reflectance from calcite surfaces than from clay minerals. This difference is attributed to continuous formation of progressively smaller diffuse reflection units forming a smoother calcite surface. Decrease of grain size does not form considerably smaller diffuse reflection units in clay minerals unless delamination takes place. With prolonged grinding, amorphization forms additional diffuse reflection units and a smoother surface due to comminution.

Keywords: BENTONITE; CALCITE; CRYSTALLITE SIZE; DIFFUSE REFLECTION UNIT; GRINDING; TALC

Document Type: Research Article

DOI: http://dx.doi.org/10.1180/0009855043920128

Publication date: June 1, 2004

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more