Synthetic allophane from high-concentration solutions: nanoengineering of the porous solid

$14.96 plus tax (Refund Policy)

Buy Article:

Abstract:

The amorphous aluminosilicate allophane was synthesized by rapid mixing of inorganic solutions with high initial concentrations (10–100 mmol/l) followed by hydrothermal treatment. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed homogeneous products having a hollow spherical amorphous structure with a particle diameter of 3–5 nm. The amorphous products had a high BET specific surface area (490–552 m2/g) in comparison with natural allophane and had a narrow pore-size distribution (2–5 nm in diameter). The results of water vapour adsorption isotherm studies showed a gradual increase over the range of relative water vapour pressure of 0.6–0.9 and reached a maximum of ~85 wt.%. The synthetic allophane shows promise as an adsorbent material because of its high adsorption-desorption capacity and its unique structure.

Keywords: ADSORPTION ISOTHERMS; ALLOPHANE SYNTHESIS; NANOENGINEERING; POROUS SOLIDS; SPHERICAL HOLLOW STRUCTURE

Document Type: Research Article

DOI: http://dx.doi.org/10.1180/0009855023730052

Publication date: September 1, 2002

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more