Skip to main content

Self-diffusion of H2O in stevensite gel: effects of temperature and clay fraction

Buy Article:

$12.55 plus tax (Refund Policy)

Self-diffusion coefficients of water molecules (1H2O) in Na-stevensite gel were measured by pulsed-gradient spin-echo (PGSE) proton nuclear magnetic resonance (NMR). The effects of clay fraction (0.00—37.7 wt.%) and temperature (20.0—60.3°C) were studied. The results show: (1) phenomenologically, the H2O self-diffusivity in the clay gel, D, is expressed by D/D 0= exp(—0.0198w) where D 0 is the H2O self-diffusivity in bulk water of the temperature and w is the clay weightfraction (wt.%). (2) The activation energy of the diffusivity in the stevensite gel is nearly equal to that in bulk water. Thus, the normalized diffusivity, D/D 0, obeys a temperature-independent master curve. (3)The exponential dependence of D/D 0 on w for w < 25 wt.% (≈ 12 vol.%) can be explained by a random walk model, in which unbound H2O molecules diffuse in the geometrically tortuous pore structure of randomly scattered clay mineral grains. (4) The measured diffusivity can also be explained by a model of unbound H2O diffusing in a polymer network with a specific mesh size or characteristic interval of the crosslinkage.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2002-03-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more