Skip to main content

Diagenesis of trioctahedral clays in a Miocene to Pleistocene sedimentary-magmatic sequence in the Dead Sea Rift, Israel

Buy Article:

$12.59 plus tax (Refund Policy)

The diagenetic evolution of clay minerals in a 4249 m sedimentary-magmatic sequence of the Zemah-1 drillhole in the Dead Sea Rift, Israel, was studied, mainly by X-ray diffraction (XRD). The parallel maturation of the organic matter was estimated by the thermal alteration index (TAI) method. Both parameters follow a progressive diagenesis with depth. The original clays, now encountered only at shallow depths, were dioctahedral, and mostly detrital. They transformed into Mg-rich trioctahedral clays starting with a saponite-dominated assemblage, followed by a saponite, ordered chlorite-smectite (C-S), and chlorite assemblage, and finally by a saponite, corrensite, chlorite and talc assemblage. Significant mineralogical composition gaps occur between saponite to corrensite and corrensite to chlorite. Short-range variations within the most evolved assemblage are controlled by bulk-rock composition. Depths of first occurrence and disappearance of minerals indicate a much higher geothermal gradient in the past whereas the TAI values suggest an even higher palaeogradient of ~70°C km-1.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CORRENSITE; DEAD SEA RIFT; DIAGENESIS; THERMAL ALTERATION INDEX; TRIOCTAHEDRAL CLAYS

Document Type: Research Article

Publication date: 2001-03-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more