Surface modification of bentonites: I. Betaine montmorillonites and their rheological and colloidal properties

$14.96 plus tax (Refund Policy)

Buy Article:

Abstract:

Montmorillonite was modified by replacing the exchangeable cations with betaines (CH3)3N+ - (CH2)n - COO-M+ (n = 3, 5,7, 10) The betaine derivatives delaminated in water and formed a colloidal dispersion. Air-drying of this material yielded hard pieces which were difficult to redisperse. The dried material became redispersible in water when the Na ions (counterions to the carboxyl groups) were replaced by Li ions. Colloidal dispersions of this material were more stable against salts than Li+- or Na+-montmorillonite. Extremely high LiCl concentrations (>1 mol/l) were needed to coagulate the betaine derivatives (n>5) in the presence of diphosphate. The increased salt stability resulted from lyospheres around the silicate layers or thin packets of them which reduced the van der Waals attraction. Addition of organic solvents destabilized the dispersion by compressing the diffuse ionic layer (DLVO theory). The delaminated particles then aggregated to small flocs which settled very slowly. Neither band-type structures nor cardhouses were formed at conditions comparable to network formation and stiffening of Li- and Na-montmorillonite dispersions. Rheological measurements revealed the liquefying action of the betaines. Dispersions of butyrobetaine montmorillonite (15 g solid/l) revealed a relative viscosity (related to the dispersion medium water) rel ≊ 2. The longer chain derivatives showed a value slightly >1 whereas Li+-montmorillonite had rel = 8. Yield values were not formed at pH ≊ 7. Only at acidic conditions did the butyrobetaine montmorillonite dispersion showed a small yield value (<200 mPa).

Document Type: Research Article

DOI: http://dx.doi.org/10.1180/000985599546352

Publication date: September 1, 1999

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more