Skip to main content

Geological controls on kaolin particle shape and consequences for mineral processing

Buy Article:

$12.15 plus tax (Refund Policy)

The kaolinized granites of St. Austell, England, are worked to produce a range of china clay products, for some of which the kaolin has to meet stringent particle shape and size specifications. Systematic petrographic study indicates that kaolin occurs in the form of two textural types: (i) finely crystalline kaolin (typically <5m in average diameter), which infills dissolution porosity of granitic feldspars, and (ii) coarsely crystalline vermiform aggregates (up to 100m or more in length), which are closely associated with expanded micas. The vermiform aggregates are characterized by an intergrowth of mica and kaolin crystals, which can be observed at scales of resolution offered by TEM. Textural and chemical evidence suggest that the expanded mica texture is probably the result of preferential precipitation of kaolin along mica cleavage planes and is not simply a process of chemical replacement. Petrographic examination of kaolin slurries sampled at different points in a typical refinery circuit indicates that platy products with high aspect ratio are derived exclusively from raw materials rich in vermiform aggregates. The fine scale intergrowth of kaolin and mica within the aggregates results in circumstances where mica persists through to fine grained products. Furthermore, the absence of Fe or other chemical components in the kaolin structure suggests that any iron reported for the final products may be a consequence of the presence of Fe-bearing mica within a very fine grained intergrowth.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 1999-03-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more