Skip to main content

Nature of mixed iron and aluminium gels as affected by Fe/Al molar ratio, pH and citrate

Buy Article:

$13.61 plus tax (Refund Policy)

Abstract:

The nature and mineralogy of mixed Al and Fe(III) gels (initial Fe/Al molar ratios (Ri) of 1.0 and 2.5) formed at pH values ranging from 4.0 to 10.0, both in the presence and absence of citric acid (citrate/Fe + Al molar ratio (Rcit) of 0.01 and 0.1) and aged for a long period at room temperature and at 50°C have been studied. The complexes showed considerable differences in the mineralogy of the precipitation products. The samples formed at Ri = 1.0 contained ferrihydrite at pH 4.0, ferrihydrite + gibbsite at pH 5.0-7.0, and hematite + Al(OH)3 polymorphs + ferrihydrite at pH 9.0-10.0. The samples formed at Ri = 2.5 had greater quantities of poorly crystallized ferrihydrite. Large amounts of Fe+Al (25-82%) were solubilized from the samples aged for 60 days at 50°C by ammonium oxalate. The addition of increasing concentrations of citrate to the gel suspensions containing equimolar amounts of Fe and Al strongly inhibited the formation of Al(OH)3 polymorphs both at pH 5.0 or 8.5 by promoting the formation of short-range ordered materials. Citrate added initially to Fe-Al solutions (R*cit = 0.1) completely inhibited formation of crystals even after 135 days at 50°C.

Document Type: Research Article

DOI: http://dx.doi.org/10.1180/000985598545679

Affiliations: Dipartimento di Scienze Chimico-Agrarie, Universita ` di Napoli Federico II, 80055 Portici, Italy

Publication date: September 1, 1998

More about this publication?
minsoc/cm/1998/00000033/00000003/art00013
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-23
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more