Skip to main content

Better Than Optimal By Taking A Limit?

Buy Article:

$12.00 plus tax (Refund Policy)

Designing an optimal Norman window is a standard calculus exercise. How much more difficult (or interesting) is its generalization to deploying multiple semicircles along the head (or along head and sill, or head and jambs)? What if we use shapes beside semi-circles? As the number of copies of the shape increases and the optimal Norman windows approach a rectangular shape, what proportions arise? How does the perimeter of the limiting rectangle compare to the limit of the perimeters? These questions provide challenging optimization problems for students and the graphical depiction of the geometry of these window sequences illustrates more vividly than sequences of numbers, the concept of limit.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2012-11-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more