Skip to main content

Periodic Orbits for Billiards on an Equilateral Triangle

Buy Article:

$12.00 plus tax (Refund Policy)

How many ways can one set a billiard ball in motion on a frictionless triangular equilateral table so that the ball retraces the same path after n bounces? Such a path is called a periodic orbit of period n. When n is odd there is at most one such orbit, but when n is even there are uncountably many. Fortunately there is a natural equivalence relation on orbits of even period. Using techniques from plane geometry, number theory, and combinatorics we construct a bijection between equivalence classes of these orbits and a new type of integer partition. This allows us to count equivalence classes containing orbits of a given period by counting partitions.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2008-06-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more