Highly reliable flip-chip-on-flex package using multilayered anisotropic conductive film

Authors: Yim, Myung; Hwang, Jin-Sang; Kim, Jin; Ahn, Jin; Kim, Hyung; Kwon, Woonseong; Paik, Kyung-Wook

Source: Journal of Electronic Materials, Volume 33, Number 1, January 2004 , pp. 76-82(7)

Publisher: Springer

Buy & download fulltext article:

OR

Price: $47.00 plus tax (Refund Policy)

Abstract:

Anisotropic conductive film (ACF) has been used as interconnect material for flat-panel display module packages, such as liquid crystal displays (LCDs) in the technologies of tape automated bonding (TAB), chip-on-glass (COG), chip-on-film (COF), and chip-on-board (COB). Among them, COF is a relatively new technology after TAB and COG bonding, and its requirement for ACF becomes more stringent because of the need of high adhesion and fine-pitch interconnection. To meet these demands, strong interfacial adhesion between the ACF, substrate, and chip is a major issue. We have developed a multilayered ACF that has functional layers on both sides of a conventional ACF layer to improve the wetting properties of the resin on two-layer flex for better interface adhesion and to control the flow of conductive particles during thermocompression bonding and the resulting reliability of the interconnection using ACF. To investigate the enhancement of electrical properties and reliability of multilayered ACF in COF assemblies, we evaluated the performance in contact resistance and adhesion strength of a multilayered ACF and single-layered ACF under various environmental tests, such as a thermal cycling test (−55°C/+160°C, 1,000 cycles), a high-temperature humidity test (85°C/85% RH, 1,000 h), and a high-temperature storage test (150°C, 1,000 h). The contact resistance of the multilayered ACF joint was in an acceptable range of around a 10% increase of the initial value during the 85°C/85% RH test compared with the single-layered ACF because of the stronger moisture resistance of the multilayered ACF and flex substrate. The multilayered ACF has better adhesion properties compared with the conventional single-layered ACF during the 85°C/85% RH test because of the enhancement of the wetting to the surface of the polymide (PI) flex substrate with an adhesion-promoting nonconductive film (NCF) layer of multilayered ACF. The new ACF of the multilayered structure was successfully demonstrated in a fine-pitch COF module with a two-layer flex substrate.

Keywords: Flip chip; adhesion; anisotropic conductive film; chip-on-film (COF); reliability

Document Type: Research Article

DOI: http://dx.doi.org/10.1007/s11664-004-0297-1

Affiliations: Email: mjyim@telephus.com

Publication date: January 1, 2004

Related content

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page