Experimental Analysis and Modeling of the Crushing of Honeycomb Cores

Authors: Aminanda, Y.1; Castanié, B.2; Barrau, J.3; Thevenet, P.4

Source: Applied Composite Materials, Volume 12, Numbers 3-4, May 2005 , pp. 213-227(15)

Publisher: Springer

Buy & download fulltext article:


Price: $47.00 plus tax (Refund Policy)


In the aeronautical field, sandwich structures are widely used for secondary structures like flaps or landing gear doors. The modeling of low velocity/low energy impact, which can lead to a decrease of the structure strength by 50%, remains a designer’s main problem. Since this type of impact has the same effect as quasi-static indentation, the study focuses on the behavior of honeycomb cores under compression. The crushing phenomenon has been well identified for years but its mechanism is not described explicitly and the model proposed may not satisfy industrial purposes. To understand the crushing mechanism, honeycomb test specimens made of Nomex™, aluminum alloy and paper were tested. During the crushing, a CCD camera showed that the cell walls buckled very quickly. The peak load recorded during tests corresponded to the buckling of the common edge of three honeycomb cells. Further tests on corner structures to simulate only one vertical edge of a honeycomb cell show a similar behavior. The different specimens exhibited similar load/displacement curves and the differences observed were only due to the behavior of the different materials. As a conclusion of this phenomenological study, the hypothesis that loads are mainly taken by the vertical edge can be made. So, a honeycomb core subjected to compression can be modeled by a grid of nonlinear springs. A simple analytical model was then developed and validated by tests on Nomex™ honeycomb core indented by different sized spherical indenters. A good correlation between theory and experiment was found. This result can be used to satisfactorily model using finite elements the indentation on a sandwich structure with a metallic or composite skin and honeycomb core.

Keywords: honeycomb; indentation; low energy/low velocity impact; sandwich structure

Document Type: Research Article

DOI: http://dx.doi.org/10.1007/s10443-005-1125-3

Affiliations: 1: IGMT, LMS Sup’Aéro, BP 4032, 31055, Toulouse Cedex 4, France, 2: IGMT, LMS Sup’Aéro, BP 4032, 31055, Toulouse Cedex 4, France, Email: bruno.castanie@supaero.fr 3: IGMT, Université Paul Sabatier, Bat 3PN, 31062, Toulouse Cedex, France, 4: EADS Corporate Research Center, 12 rue Pasteur, BP 76, 92152, Suresnes Cedex, France,

Publication date: May 1, 2005

Related content


Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page