Skip to main content

Morphology and properties of stearate‐intercalated layered double hydroxide nanoplatelet‐reinforced thermoplastic polyurethane

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


In the past few years, layered double hydroxides (LDHs) with monolayer structure have been much studied for the development of polymer nanocomposites. LDHs with intercalated stearate anions form a bilayer structure with increased interlayer spacing and are expected to be better nanofillers in polymers. In the work reported, thermoplastic polyurethane (PU)/stearate‐intercalated LDH nanocomposites were prepared by solution intercalation and characterized. X‐ray diffraction and transmission electron microscopy confirmed the exfoliation at lower filler loading followed by intercalation at higher filler loading in PU matrix. As regards mechanical properties, these nanocomposites showed maximum improvements in tensile strength (45%) and elongation at break (53%) at 1 and 3 wt% loadings. Maximum improvements in storage and loss moduli (20%) with a shift of glass transition temperature (15 °C) and an increase in thermal stability (32 °C) at 50% weight loss were observed at 8 wt% loading in PU. Differential scanning calorimetry showed a shift of melting temperature of the soft segment in the nanocomposites compared to neat PU, possibly due to the nucleating effect of stearate‐intercalated LDH on the crystal structure of PU. All these findings are promising for the development of mechanically improved, thermally stable novel PU nanocomposites. Copyright © 2011 Society of Chemical Industry

Keywords: layered double hydroxide; mechanical properties; nanocomposites; polyurethane; thermal properties

Document Type: Research Article


Publication date: 2011-05-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more