Skip to main content

Influence of larval behavior on transport and population connectivity in a realistic simulation of the California Current System

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Using an implementation of the Region Ocean Modeling System, we investigate the influence of larval vertical swimming on spring dispersal for nearshore invertebrate species in the California Current System (CCS), with a focus on central California and the Bodega Bay area. Larvae are given a suite of idealized behaviors designed to reveal the importance of the surface boundary layer (SBL) to transport and settlement. Larvae remain near 5 m, 30 m, or transition between these depths using various strategies, including diel vertical migration (DVM) and ontogenetic vertical migration. Some behaviors result in modeled densities qualitatively similar to observed cross-shelf larval distributions. By remaining primarily below the SBL, larvae released from central California are 500 times more likely to be retained within 5 km of the coast at 30 days from release relative to those that stay near surface, and 145 times more likely to settle along the coast within a 30 to 60 day pelagic larval duration. For most behaviors, nearshore retention over time could be approximated as a modified exponential decay process. Vertical swimming also greatly affects alongshore dispersal, with each behavior resulting in a unique structure of alongshore settlement. Maintaining a depth near 30 m increases settlement throughout most of the CCS by at least an order of magnitude relative to passive larvae. Remaining near surface reduces settlement from Pt. Conception to Pt. Arena, but has less of an effect north of Cape Mendocino. Relative to passive larvae, DVM increases settlement in regional “hotspots,” but does not greatly alter overall recruitment in the CCS, and ontogenetic vertical migration increases settlement for central California regions south of Bodega Bay.

Document Type: Research Article


Publication date: July 1, 2013

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more