Skip to main content

Free Content Effective population sizes of eastern oyster Crassostrea virginica (Gmelin) populations in Delaware Bay, USA

Download Article:
(PDF 873.87890625 kb)
Effective population size (Ne ) is an important concept in population genetics as it dictates the rate of genetic change caused by drift. Ne estimates for many marine populations are small relative to the census population size. Small Ne in a large population may indicate high reproductive variance or sweepstakes reproductive success (SRS). The eastern oyster (Crassostrea virginica) may be prone to SRS due to its high fecundity and high larval mortality. To examine if SRS occurs in the eastern oyster, we studied Ne and genetic variation of oyster populations in Delaware Bay. Adult and spat oysters were collected from five locations in different years and genotyped with seven microsatellite markers. Slight genetic differences were revealed by Fst statistics between the adult populations and spat recruits, while the adult populations are spatially homogeneous and temporally stable. Comparisons of genetic diversity and relatedness among adult and spat samples failed to provide convincing evidence for strong SRS. Ne estimates obtained with five different methods were variable, small and often without upper confidence limits. For single sample collections, Ne estimates for spat (140–440) were consistently smaller than that for adults (589–2,779). Analysis of pooled adult samples across all sites suggests that Ne for the whole bay may be very large, as indicated by the large point estimates and the lack of upper confidence limits. These results suggest that Ne may be small for a given spat fall, but the entire adult population may have large Ne and is temporally stable as it is the accumulation of many spat falls per year over many years.

35 References.

No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-03-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more