Skip to main content

Hurricane wake restratification rates of one-, two- and three-dimensional processes

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


The restratification of the cold wakes of Tropical Cyclones Fanapi, Frances, Igor and Katrina are examined based on derived scalings for processes that can restore the hurricane wake toward the precyclone conditions. The different restoration processes depend on the parameters of the wake: depth, width, buoyancy anomaly and wind stress. The parameters needed are derived for each wake from satellite and climatological data. The scalings are based on model results and existing parameterizations, including air-sea heat fluxes (one-dimensional) Ekman buoyancy fluxes (two-dimensional) and mixed layer eddies (three-dimensional). The dominant surface restoration occurs by a combination of surface fluxes and Ekman buoyancy fluxes, while the submesoscale mixed layer eddy bolus fluxes are the dominant subsurface effect.

Document Type: Research Article


Publication date: November 1, 2012

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more