Skip to main content

Free Content Intermittent bioirrigation and oxygen dynamics in permeable sediments: An experimental and modeling study of three tellinid bivalves

Download Article:
(PDF 4334.98046875 kb)
To explore the dynamic nature of geochemical conditions in bioirrigated marine permeable sediments, we studied the hydraulic activity of three tellinacean bivalve molluscs (the Pacific species Macoma nasuta and Macomona liliana, and the northern Atlantic and Pacific species Macoma balthica). We combined porewater pressure sensing, time-lapse photography and oxygen imaging to quantify the durations and frequencies of tellinid irrigation activity and the associated oxygen dynamics in the sediment. Porewater pressure records of all tellinids were dominated by intermittent porewater pressurization, induced by periodic water injection into the sediment through their excurrent siphons, which resulted in intermittent oxygen supply to subsurface sediments. The irrigation (two–12 minutes long) and intervals between subsequent irrigation bouts (1.5–13 minutes) varied among tellinid species and individual sizes. For large M. liliana and M. nasuta, the average intervals between irrigation bouts were sufficiently long (10 minutes and four minutes, respectively) to allow complete oxygen consumption in between irrigation bouts in all tested sediment types. Irrigation patterns of smaller conspecifics and the smaller species M. balthica were characterized by significantly shorter separation of irrigation bouts, which resulted in more continuous oxygenation of the sediment. Transport-reaction modeling confirmed these species- and size-specific geochemical signatures and indicated that the geochemical character of the sediment is largely conditioned by the interplay between temporal irrigation patterns and sedimentary oxygen consumption rates. For large tellinids, model simulations indicated that oscillatory rather than stationary geochemical conditions are prevalent in a wide range of sediment types, with oxic pockets collapsing completely between periods of active irrigation. Based on the model results we developed analytical approximations that allow estimation of spatio-temporal characteristics of sediment oxygenation for a wide range of sediment types and infaunal activity patterns. Our results emphasize the need to consider the intermittent nature of bioirrigation when studying the geochemical impact of infauna in permeable sediments.
No References for this article.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-11-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more