Detailed internal wave mixing above a deep-ocean slope

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Turbulent vertical eddy diffusivity (K z ) and dissipation rate (ε) are estimated between 0.5 and 50 m above the sloping side of Great Meteor Seamount, Canary Basin, using 101 moored temperature sensors, 1-mK precision, sampling at 1 Hz. Effectively, detailed observed time-depth temperature images are split in two: a statically stable and a turbulence image. Tides dominate the temperature variations, but the local bottom slope is supercritical to motions at semidiurnal frequencies. Averaged over a fortnight, the observed overall time-depth mean Kz = 3±1 × 10–3 m2 s–1 and ε = 1.5±0.7 × 10–7 W kg–1. Variations with time and depth are large, by up to four orders of magnitude. Although variations do occur having tidal periodicity, shorter-scale variations are more intense. A particular tidal period shows multiple vigorous overturning events, the largest found away from the bottom during the downslope phase but just prior to arrival of an upslope moving, equally vigorous bore. The strength of the bore may be controlled by the intensity of the mixing just prior to it. The bore itself is turbulent from the bottom upward, up to some 40 m above it. Its mixing is most efficient providing large fluxes in extremely thin layers. Parameterizations of turbulence estimates are inconclusive using powers of N, as they show different relationships for different depths, time-ranges and averaging.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224012800502363

Publication date: January 1, 2012

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more