Skip to main content

Free Content Measuring overturns with gliders

Download Article:
(PDF 386.2880859375 kb)
The accuracy of the estimation of the vertical size of eddies in turbulent stratified shear flows in the ocean from measurements obtained by gliders is examined. It is assumed that gliders move along paths inclined at moderate angles to the horizontal. Comparison is made with measurements by probes falling or lowered vertically through billows resulting from Kelvin-Helmholtz (K-H) or Holmboe instability and through the statically unstable regions formed at early stages of convective breaking of internal waves. The probable errors involved in estimating the overturn scale of a K-H billow along the track of a glider are greatest when the ratio of the billow's vertical to horizontal scale, b/a, is greatest and when a glider's inclination angle, α, is moderate, but the errors are generally relatively small. At small angles, α, the glider path may intersect more than one billow, reducing the errors. Larger errors are possible, however, in measuring eddies in turbulent stratified shear flows, and their magnitude depends on the orientation of eddies relative to the trajectory of the glider.

False overturns may be apparent using gliders with small inclination angles, α, in internal waves, and consequently erroneous estimates of the displacement scales obtained, even when the slope of the waves, s, < 1 and convective overturn is entirely absent. Quantification of overturns from glider measurements of the apparent vertical size of the regions in which the density increases upward can result in misleading estimates of the scale of overturns. Although, because of the wave-induced horizontal and vertical motions, the trajectory of free-fall probes will not be vertical when passing through an internal wave field, and nor will it be steady, the mean square displacements obtained from measurements are found to be the same as those that would be made by a probe passing vertically through a frozen wave field. Attention is drawn to the paucity of information about the structure of naturally occurring eddies in the stratified ocean.

27 References.

No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-01-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more