Skip to main content

Free Content The nonlinear downstream development of baroclinic instability

Download Article:
(PDF 652.1 kb)
The downstream development in both space and time of baroclinic instability is studied in a nonlinear channel model on the f-plane. The model allows the development of the instability to be expressed on space and time scales that are long compared to the growth rates and wavelengths of the most unstable wave. The unstable system is forced by time-varying boundary conditions at the origin of the channel and so serves as a conceptual model for the development of fluctuations in currents like the Gulf Stream and Kuroshio downstream of their separation points from their respective western boundaries.

The theory is developed for both substantially dissipative systems as well as weakly dissipative systems for which the viscous decay time is of the order of the advective time in the former case and the growth time in the latter case. In the first case a first order equation in time leads to a hyperbolic system for which exact solutions are found in the case of monochromatic forcing. For a finite bandwidth the governing equations are nonlinear and parabolic and could be put in the form of the Real Ginzburg Landau equation first developed by Newell and Whitehead (1969) and Segel (1969) although we show the equation is not pertinent to the downstream development problem.

When the dissipation is small a third order system of partial differential equations is obtained. For steady states the system supports chaotic behavior along the characteristics. This produces for the-time dependent problem new features, principally a strong focusing of amplitude in the regions behind the advancing front and the appearance of what might be called “chaotic shocks.”

2 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 July 2011

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more