Skip to main content

Ocean stratification under oscillatory surface buoyancy forcing

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Laboratory experiments with overturning circulation driven by oscillatory heat fluxes at one boundary are used to explore implications, for the ocean stratification, of a cyclic fluctuation in sea-surface buoyancy forcing. Fluctuations having a range of periods spanning the timescale for global recycling of the ocean volume through the thermocline are considered, with emphasis on inter-hemispheric 'see-saw' oscillations. Episodic sinking of dense water in the oceans is represented by convection in a channel with a base that is cooled over a central region and subjected to oscillatory heating near both ends, while providing a constant total heat input. For this simplified system the time-average interior temperature is found to be insensitive to the forcing period, but does vary with oscillation amplitude, whereas the interior fluctuations increase with forcing period. The circulation and density field are significantly different from those given by a steady forcing equal to the time-average of the actual oscillatory forcing, even for high-frequency oscillations. The results indicate that the overall stratification lies between that expected from the strongest phase of deep sinking and that given by symmetric sinking in both hemispheres. Glacial cycles are predicted to involve significant temperature fluctuations in the abyssal ocean. However, they are too short for the ocean to remain in quasi-equilibrium with the changing boundary conditions.

Document Type: Research Article


Publication date: 2011-07-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more