Skip to main content

Modeling the evolution of intrathermocline lenses in the Atlantic Ocean

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

The existence of a tongue of Mediterranean Water (MW) at the depths of 500–1500 m is a characteristic feature of the hydrological regime in the northeastern part of the Atlantic Ocean. Anticyclonic eddies filled with MW (meddies or lenses) are observed in this region. They are identified via their high temperature and salinity anomalies, which compensate in density, yielding nearly homogeneous meddy cores. The analysis of historical observations has showed that approximately 100 lenses can exist simultaneously in this part of the ocean. High concentration of large water volumes (>4000 km3 each) can be found both in the region of their origin near the Iberian Peninsula and near the Azores Frontal Zone. The latter is precisely the region in which merging of eddies can occur to form larger lenses. The existence of long-living lenses at large distances from the region of their formation is an indirect indication of the fact that merging of lenses occurs (MESOPOLYGON lens, SM1 lens in the SEMAPHORE experiment, and a lens in the Sargasso Sea).

Here, we analyze the results of model experiments on interaction between two anticyclonic eddies applying the contour dynamics method (CDM) to a three-layer ocean. In these experiments, the vertical distribution of layerwise density in the layers, the horizontal size of the eddies (assumed to be cylindrical structures), and their depth location correspond to the observed conditions in the Atlantic Ocean. We show that the evolution of intrathermocline eddies and the evolution of barotropic eddies differ significantly. We found the behavior of interacting eddies in the middle layer depends on the Froude number. We determined the critical distances between the lenses when their merger begins and the destruction' criterion for the elliptical intrathermocline eddies.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224011798765231

Publication date: March 1, 2011

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
jmr/jmr/2011/00000069/F0020002/art00003
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more