Skip to main content

Deep chlorophyll maximum and upper ocean structure interactions: Case of the Guinea Thermal Dome

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Deep Chlorophyll Maximum (DCM) modifies the upper ocean heat capture distribution and thus impacts water column temperature and stratification, as well as biogeochemical processes. This energetical role of the DCM is assessed using a 1 m-resolution 1D physical-biogeochemical model of the upper ocean, using climatological forcing conditions of the Guinea Dome (GD). This zone has been chosen among others because a strong and shallow DCM is present all year round. The results show that the DCM warms the seasonal thermocline by +2°C in September/October and causes an increase of heat transfer from below into the mixed layer (ML) by vertical diffusion and entrainment, leading to a ML warming of about 0.3°C in October. In the permanent thermocline, temperature decreases by up to 2°C. The result is a stratification increase of the water column by 0.3°C m−1 which improves the thermocline realism when compared with observations. At the same time, the heating associated with the DCM is responsible for an increase of nitrate (+300%, 0.024 M), chlorophyll (+50%, 0.02 g l−1) and primary production (+45%: 10 mg C m−2 day−1) in the ML during the entrainment period of October. The considered concentrations are small but this mechanism could be potentially important to give a better explanation of why there is a significant amount of nitrate in the ML. The mechanisms associated with the DCM presence, no matter which temperature or biogeochemical tracers are concerned, are likely to occur in a wide range of tropical or subpolar regions; in these zones a pronounced DCM is present at least episodically at shallow or moderate depths. These results can be generalized to other thermal dome regions where relatively similar physical and biogeochemical structures are encountered. After testing different vertical resolutions (10 m, 5 m, 2.5 m, 1 m and 0.5 m), we show that using at least a 1 m vertical resolution model is mandatory to assess the energetical importance of the DCM.

Document Type: Research Article


Publication date: March 1, 2009

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more