Mass transport in the Stokes edge wave

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

The Lagrangian mass transport in the Stokes progressive edge wave is obtained from the vertically integrated equations of momentum and mass, correct to second order in wave steepness. The cross-shore momentum balance is between the mean pressure at the sloping bottom, the radiation stress, and the pressure gradient due to the mean surface slope. In the alongshore direction, the effect of viscosity leads to a wave attenuation, and hence a radiation stress component. The frictional effect on the mean Eulerian motion is modeled through a turbulent bottom drag. The alongshore momentum balance is between the mean pressure gradient due to the surface slope, the radiation stress, and the turbulent drag on the mean Eulerian flow. It is shown that −∂E/∂y, where E is the total mean energy density for waves along the y-axis, is the wave-forcing term for the total mean Lagrangian momentum in the trapping region. This result is independent of the bottom slope angle. Vertically-averaged drift velocity components are obtained from the fluxes, divided by the local depth. Utilizing physical parameters relevant for field conditions, it appears the traditional Stokes drift in the Stokes edge wave is negligible compared to the mean Eulerian velocity component. The importance of this drift for the near-shore transport of effluents and suspended light sediments is discussed.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224009789051182

Publication date: March 1, 2009

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more