Skip to main content

Free Content Energetics in Delaware Bay: Comparison of two box models with observations

Download Article:
(PDF 3514.6953125 kb)
A corrected version of an unstratified box model of potential energy anomaly , initially developed by Garvine and Whitney (2006), and a new two-layer box model that allows for stratified and well-mixed conditions are applied to Delaware Bay. The models are applied for the Garvine and Whitney (2006) 1988-1994 study period and in Spring 2003; however, only model results of potential energy anomaly from the latter period are compared to in situ observations obtained outside the bay mouth. Unstratified model results for the two study periods reveal that the river discharge (Ω1) is the largest potential energy anomaly contributor. This term is closely followed (but with opposite sign) by the coastal current efflux term (Ω2). For the two-layer model the largest contributor is the dense inflow term (Ω6). The wind term (Ω5) is the second largest, followed by the tide (Ω3), river discharge (Ω1) and coastal current terms. In both models the solar heat flux term (Ω4) makes the smallest contribution to. The available one-month comparison of model results to observations renders statistically insignificant correlation coefficients for both models. We speculate dynamical differences between conditions at the estuary mouth and the instrument location on the nearby shelf contribute to the model-observation mismatch. Other statistics, such as the root mean square error indicate that the unstratified model performs better than the two-layer model for the observation period. The latter model is, however, able to depict the importance of tides and winds in the computation of potential energy anomaly and is able to detect the response of due to strong wind events. While there is no clear model choice for the Delaware Bay, the unstratified model may be entirely inappropriate for highly stratified estuaries.

10 References.

No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2008-11-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more