Cross-shelf structure of coastal upwelling: A two — dimensional extension of Ekman's theory and a mechanism for inner shelf upwelling shut down

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Sea-surface temperature images of the coastal upwelling regions off Northwest Africa show that the core of upwelling is sometimes located far from the coast. This has been documented in three regions that share a common feature, namely a wide and shallow continental shelf. This upwelling feature plays a key role in the ecology of the Canary Current System. It creates an innerfront which provides retention for biological material, e.g. fish eggs and larvae, in the highly productive nearshore environment.

An analytical model has been developed based on a two dimensional extension of Ekman's solution. The linear and steady response of a homogeneous ocean forced by an upwelling-favorable wind provides a mechanism for the upwelling separation from the coast. The merging of the surface and bottom Ekman layers induces a very weak cross-shore circulation and a “kinematic barrier” for the Ekman transport divergence. In the case of an alongshore wind, the barrier is located near the isobath h ≈ 0.4D, where D is the thickness of Ekman layers. This yields an upwelling cell which is essentially concentrated in the region 0.5D < h < 1.25D, with upwelling occurring preferentially near the isobath h ≈ 0.6D. It turns out that the cross-shore width of upwelling scales with D/S, the ratio of Ekman depth to bottom topographic slope. The application of this solution to real bathymetric profiles rationalizes, not only the offshore upwelling observations in Northwest Africa, but also the influence of topography on the cross-shelf structure of a wind-driven coastal upwelling. The model also quantifies the effect of the cross-shore wind component showing how it drives the nearshore pressure gradient adjustment and how it affects the upwelling. A linear numerical experiment reproduces the theoretical steady solution, thereby allowing investigation of the transient regime. Relaxation of the hypothesis in the numerical model validates the linear assumption of the theory and then allows investigation of the sensitivity to friction parameterizations and the influence of stratification. The latter leads to an “oscillation” of the upwelling cell with seaward migration driven by outcropping and homogeneization of the water column, and, coastal incursion driven by a “boundary layers splitting” process caused by shoreward advection of the isopycnal dome and stratification of the inner shelf.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224008787536790

Publication date: September 1, 2008

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more