Free Content Field investigation on seawater temperature variability in relation to horizontal optical gradient

 Download
(PDF 5,347.7 kb)
 
Download Article:

Abstract:

The spatial variability of radiant energy absorption in seawater can result from the non-homogeneity of the concentration of its optically active components, such as chlorophyll or dissolved organic matter. This non-homogeneity leads to local changes in the radiant heating rate and consequent changes in water temperature. Besides a simple dependence, for instance when a higher phytoplankton concentration is accompanied by a temperature rise, a relation that is more complex may occur. A theoretical analysis suggested that sufficiently strong horizontal changes in seawater absorption may cause, in their close proximity, an additional increase or decrease in the heating rate. To confirm this, we carried out preliminary simultaneous measurements of temperature and the light-beam attenuation coefficient (in the short-wave part of the visible band of the radiation spectrum) in the surface waters of the Gulf of Gdańsk (Southern Baltic) between 2003 and 2005. We determined that additional temperature changes occurred on one side of the boundary between water masses which had significantly different light-beam attenuation coefficients. When solar radiation penetrated through an area with a strong increase in the attenuation coefficient, a local rise in temperature would occur, even by a few tenths of a degree Celsius, often leading to the creation of maxima. In instances of radiation permeating to much more transparent water, the temperature would drop, with the effect being distinctly weaker - the maximum temperature decrease was approximately 0.1°C. These observations corresponded to theoretical predictions of temperature variability resulting from the presence of horizontal optical gradient.

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224007784219020

Publication date: November 1, 2007

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more