If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Free Content Dissipation in hydraulic transitions in flows through abyssal channels

 Download
(PDF 218.2kb)
 
Download Article:

Abstract:

There is growing evidence from observations that mixing occurs in hydraulic jumps, or flow transitions, downstream of sills within channels connecting deep ocean basins or within submarine canyons on the flanks of mid-ocean ridges. Models with continuous profiles of velocity and density upstream and downstream of a transition, but conforming to continuity conditions, are devised to represent the mixing that occurs in a hydraulic jump in a stratified shear flow of finite depth moving over a horizontal boundary in a deep fluid. These are used to assess the conditions in which transitions may occur and to provide an estimate of the loss in the flux of energy carried by the flow. An increase in the thickness of the stratified flow layer is necessary as water passes through a transition. The rate of loss of energy flux per unit channel width in a transition is typically of order 6h(gh)3/2, where h is a measure of the thickness of the flow before transition, g the acceleration due to gravity and  = Δ/ (≪1), where Δ is half the difference in density between that in the flow approaching the transition and that in the overlying fluid, and  is the mean density. The mean rate of loss of energy in a transition in the flow of Antarctic Bottom Water over just one of the 6 – 8 sills in the Romanche Fracture Zone is estimated to be of order 60 MW (6 × 107 W).

Document Type: Research Article

DOI: http://dx.doi.org/10.1357/002224007780388711

Publication date: January 1, 2007

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more