Skip to main content

Free Content Differential fates of Emiliania huxleyi-derived fatty acids and alkenones in coastal marine sediments: Effects of the benthic crustacean Palaemonetes pugio

Download Article:
(PDF 300.6064453125 kb)


In order to examine how benthic crustaceans affect the fates of phytoplankton-derived lipid biomarkers (fatty acids and alkenones) in coastal marine sediments, we incubated Emiliania huxleyi cells in microcosms (pre-sieved sediment cores with and without the grass shrimp Palaemonetes pugio ) over six weeks. Crustacean, transport of surface sediments, and distributions of algal lipids were followed during incubations. Crustacean activities enhanced degradation of algal fatty acids (2–4× faster) but had a small impact on algal alkenone degradation (<1.4×) compared to the controls. During the first few days of incubations, alkenone concentrations were enriched while algal fatty acid concentrations were depleted in suspended particles in the overlying water of cores, indicating that P. pugio selectively grazed algal material from sediments and preferentially assimilated fatty acids over alkenones through digestion. Unlike algal fatty acids, alkenones were degraded primarily by microbial processes rather than by crustacean grazing. A substantial fraction (20–30%) of algal lipids was moved downward to the subsurface of sediments by P. pugio but algal fatty acids were more rapidly (3–6×) degraded than alkenones. In the presence of P. pugio, fatty acids bound in cell membrane and intracellular storage components degraded similarly, indicating that the crustacean activities minimized the effects of structural associations on fatty acid decomposition. Furthermore, there was no preferential degradation of 37:3 and 37:2 alkenones in both crustacean and control cores, suggesting that the U37k' index (a paleotemperature indicator) was not significantly altered by P. pugio's grazing or microbial decomposition.

Document Type: Research Article


Publication date: 2006-09-01

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more